Fast and precise light-curve model for transiting exoplanets with rings

Author:

Rein Edan12ORCID,Ofir Aviv3ORCID

Affiliation:

1. Gymnasia Re’alit High School, Rishon LeZion 7523355, Israel

2. The Davidson Institute of Science Education, Rehovot 7610001, Israel

3. Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel

Abstract

ABSTRACT The presence of silicate material in known rings in the Solar system raises the possibility of ring systems existing even within the snow line – where most transiting exoplanets are found. Previous studies have shown that the detection of exoplanetary rings in transit light curves is possible, albeit challenging. To aid such future detection of exoplanetary rings, we present the Polygon + Segments model for modelling the light curve of an exoplanet with rings. This high-precision model includes full ring geometry as well as possible ring transparency and the host star’s limb darkening. It is also computationally efficient, requiring just a 1D integration over a small range, making it faster than existing techniques. The algorithm at its core is further generalized to compute the light curve of any set of convex primitive shapes in transit (e.g. multiple planets, oblate planets, moons, rings, combination thereof, etc.) while accounting for their overlaps. The python source code is made available.

Funder

Koshland Foundation and McDonald-Leapman

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3