Affiliation:
1. Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
Abstract
ABSTRACT
We present equilibrium sequences of rotating relativistic stars, constructed with a new rotation law that was proposed by Uryū et al. (2017). We choose rotational parameters motivated by simulations of binary neutron star merger remnants, but otherwise adopt a cold, relativistic N = 1 polytropic EOS, in order to perform a detailed comparison to published equilibrium sequences that used the Komatsu, Eriguchi and Hachisu (1989) rotation law. We find a small influence of the choice of rotation law on the mass of the equilibrium models and a somewhat larger influence on their radius. The versatility of the new rotation law allows us to construct models that have a similar rotational profile and axial ratio as observed for merger remnants, while at the same time being quasi-spherical. More specifically, we construct equilibrium sequence variations with different degrees of differential rotation and identify type A and type C solutions, similar to the corresponding types in the classification of Ansorg, Gondek-Rosińska and Villain (2009). While our models are highly accurate solutions of the fully general relativistic structure equations, we demonstrate that for models relevant to merger remnants the IWM-CFC approximation still maintains an acceptable accuracy.
Funder
Instituto Nazionale di Fisica Nucleare
Centre National de la Recherche Scientifique
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献