Multiband gravitational wave observations of stellar binary black holes at the low to middle and high frequencies

Author:

Zhao Yuetong12ORCID,Lu Youjun12ORCID,Yan Changshuo12,Chen Zhiwei12ORCID,Ni Wei-Tou13

Affiliation:

1. CAS Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences , 20A Datun Road, Beijing 100101, China

2. School of Astronomy and Space Sciences, University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing 100049, China

3. Innovation Academy of Precision Measurement Science and Technology (APM), Chinese Academy of Sciences , Wuhan 430071, China

Abstract

ABSTRACT The ground-based gravitational wave (GW) observatories discover a population of merging stellar binary black holes (BBHs), which are promising targets for multiband observations by the low-, middle-, and high-frequency GW detectors. In this paper, we investigate the multiband GW detections of BBHs and demonstrate the advantages of such observations in improving the localization and parameter estimates of the sources. We generate mock samples of BBHs by considering different formation models as well as the merger rate density constrained by the current observations (GWTC-3). We specifically consider the astrodynamical middle-frequency interferometer GW observatory (AMIGO) in the middle-frequency band and estimate that it may detect 21–91 BBHs with signal-to-noise ratio ϱ ≥ 8 in a 4-yr observation period. The multiband observations by the low-frequency detectors [Laser Interferometer Space Antenna (LISA) and Taiji] and AMIGO may detect 5–33 BBHs with ϱLT ≥ 5 and ϱAMI ≥ 5, which can evolve to the high-frequency band within 4 yr and can be detected by the Cosmic Explorer (CE) and Einstein Telescope (ET). The joint observations of LISA-Taiji-AMIGO-ET-CE may localize the majority of the detectable BBHs in sky areas of 7 × 10−7 to 2 × 10−3 deg2, which is improved by a factor of ∼120, ∼2.4 × 105, ∼1.8 × 104, or ∼1.2 × 104, comparing with those by only adopting CE-ET, AMIGO, LISA-Taiji, or LISA-Taiji-AMIGO. These joint observations can also lead to an improvement of the measurement precision of the chirp mass (symmetric mass ratio) by a factor of ∼5.5 × 104 (33), ∼16 (8), ∼120 (90), or ∼5 (5), comparing with those by CE-ET, AMIGO, LISA-Taiji, or LISA-Taiji-AMIGO.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3