Affiliation:
1. Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
Abstract
ABSTRACT
A seven-parameter distribution function (DF) is fitted to $20\, 000$ RR-Lyrae stars for which only astrometric data are available. The observational data are predicted by the DF in conjunction with the gravitational potential of a self-consistent model Galaxy defined by DFs for the dark halo, the bulge, and a four-component disc. Tests of the technique developed to deal with missing line-of-sight velocities show that adding such velocities tightens constraints on the DF only slightly. The recovered model of the RR-Lyrae population confirms that the population is flattened and has a strongly radially biased velocity distribution. At large radii, its density profile tends to ρ ∼ r−4.5 but no power law provides a good fit inside the solar sphere. The model is shown to provide an excellent fit to the data for stars brighter than r = 16.5 but at certain longitudes it predicts too few faint stars at Galactocentric radii $\sim 20\, \mathrm{kpc}$, possibly signalling that the halo is not axisymmetric. The DF is used to predict the velocity distribution of BHB stars for which space velocities are available. The z components are predicted successfully but too much anisotropy in the vRvϕ plane is expected.
Funder
Science and Technology Facilities Council
Leverhulme Trust
University of Hawaii
Johns Hopkins University
Durham University
Space Telescope Science Institute
National Aeronautics and Space Administration
National Science Foundation
University of Maryland
Eotvos Lorand University
Los Alamos National Laboratory
Gordon and Betty Moore Foundation
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献