Multipoint remote and in situ observations of interplanetary coronal mass ejection structures during 2011 and associated geomagnetic storms

Author:

Mishra Wageesh12,Dave Kunjal3,Srivastava Nandita4,Teriaca Luca2

Affiliation:

1. Indian Institute of Astrophysics, II Block, Koramangala, Bengaluru 560034, India

2. Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, Göttingen 37007, Germany

3. C. U. Shah University, Wadhwan, Surendranagar 363030, Gujarat, India

4. Udaipur Solar Observatory, Physical Research Laboratory, Udaipur 313001, Rajasthan, India

Abstract

ABSTRACT We present multipoint remote and in situ observations of interplanetary coronal mass ejection (ICME) structures during the year 2011. The selected ICMEs arrived at Earth on 2011 March 11 and 2011 August 6, and led to geomagnetic storms. Around the launch of these CMEs from the Sun, the coronagraphs onboard STEREO-Aand-B and SOHO enabled the CMEs to be imaged from three longitudinally separated viewpoints. We attempt to identify the in situ plasma and magnetic parameters of the ICME structures at multiple locations, for example at both STEREO spacecraft and also at the ACE/Wind spacecraft near the first Sun–Earth Lagrangian point (L1), to investigate the global configuration, interplanetary propagation, arrival times and geomagnetic response of the ICMEs. The near-Earth identified ICMEs of March 11 and August 6 formed as a result of the interaction of two successive CMEs observed in the inner corona on March 7 (for the March 11 ICME) and on August 3–4 (for the August 6 ICME). Our study suggests that the structures associated with interacting CMEs, possibly as a result of deflection or large sizes, may reach to even larger longitudinally separated locations in the heliosphere. Our multipoint in situ analysis shows that the characteristics of the same shock, propagating in a pre-conditioned medium, may be different at different longitudinal locations in the heliosphere. Similarly, multiple cuts through the same ejecta/complex ejecta, formed as a result of CME–CME interaction, are found to have inhomogeneous properties. The study highlights the difficulties in connecting the local observations of an ICME from a single in situ spacecraft to its global structures.

Funder

NASA

Catholic University of America

Naval Research Laboratory

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3