And yet it flips: connecting galactic spin and the cosmic web

Author:

Kraljic Katarina1,Davé Romeel123ORCID,Pichon Christophe45

Affiliation:

1. Institute for Astronomy, Royal Observatory, Edinburgh EH9 3HJ, UK

2. University of the Western Cape, Bellville, Cape Town 7535, South Africa

3. South African Astronomical Observatories, Observatory, Cape Town 7925, South Africa

4. UMR 7095, Institut d’Astrophysique de Paris, Sorbonne Universités, UPMC Univ Paris 6 et CNRS, 98 bis Boulevard Arago, 75014 Paris, France

5. Korea Institute for Advanced Study (KIAS), 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea

Abstract

ABSTRACT We study the spin alignment of galaxies and haloes with respect to filaments and walls of the cosmic web, identified with DisPerSE , using the Simba simulation from z = 0 − 2. Massive haloes’ spins are oriented perpendicularly to their closest filament’s axis and walls, while low-mass haloes tend to have their spins parallel to filaments and in the plane of walls. A similar mass-dependent spin flip is found for galaxies, albeit with a weaker signal particularly at low mass and low-z, suggesting that galaxies’ spins retain memory of their larger scale environment. Low-z star-forming and rotation-dominated galaxies tend to have spins parallel to nearby filaments, while quiescent and dispersion-dominated galaxies show preferentially perpendicular orientation; the star formation trend can be fully explained by the stellar mass correlation, but the morphology trend cannot. There is a dependence on HI mass, such that high-HI galaxies tend to have parallel spins while low-HI galaxies are perpendicular, suggesting that HI content may trace anisotropic infall more faithfully than the stellar component. Finally, at fixed stellar mass, the strength of spin alignments correlates with the filament’s density, with parallel alignment for galaxies in high density environments. These findings are consistent with conditional tidal torque theory, and highlight a significant correlation between galactic spin and the larger scale tides that are important e.g., for interpreting weak lensing studies. Simba allows us to rule out numerical grid locking as the cause of previously-seen low mass alignment.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3