The chemical composition of the accretion disc and donor star in ultra-compact X-ray binaries: A comprehensive X-ray analysis

Author:

Koliopanos Filippos12ORCID,Péault Mathias12,Vasilopoulos Georgios3ORCID,Webb Natalie12

Affiliation:

1. CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France

2. Université de Toulouse, UPS-OMP, IRAP, 9, avenue du Colonel Roche BP 44346 31028 Toulouse Cedex 4, Toulouse, France

3. Department of Astronomy, Yale University, PO Box 208101, New Haven, CT 06520-8101, USA

Abstract

ABSTRACT We have analysed the X-ray spectra of all known Ultra-Compact X-ray Binaries (UCXBs), with the purpose of constraining the chemical composition of their accretion disc and donor star. Our investigation was focused on the presence (or absence) of the Fe Kα emission line, which was used as the probe of chemical composition of the disc, based on previously established theoretical predictions for the reflection of X-ray radiation off the surface of C/O-rich or He-rich accretion discs in UCXBs. We have contrasted the results of our spectral analysis to the history of type I X-ray bursts from these systems, which can also indicate donor star composition. We found that UCXBs with prominent and persistent iron Kα emission also featured repeat bursting activity. On the other hand, the UCXBs for which no iron line was detected, appear to have few or no type I X-ray bursts detected over more than a decade of monitoring. Based on Monte Carlo simulations, demonstrating a strong correlation between the Fe Kα line strength and the abundance of C and O in the accretion disc material and given the expected correlation between the H/He abundance and the recurrence rate of type I X-ray bursts, we propose that there is a considerable likelihood that UCXBs with persistent iron emission have He-rich donors, while those that do not, likely have C/O or O/Ne/Mg-rich donors. Our result strongly advocate for the development of more sophisticated simulations of X-ray reflection from hydrogen-poor accretion discs.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3