Magnetic angle evolution in accreting neutron stars

Author:

Biryukov Anton12ORCID,Abolmasov Pavel3ORCID

Affiliation:

1. Sternberg Astronomical Institute, Moscow State University, 13 Universitetsky pr., Moscow 119234, Russia

2. Institute of Physics, Kazan Federal University, 18 Kremlyovskaya str., Kazan 420008, Russia

3. Department of Physics and Astronomy, FI-20014 University of Turku, Finland

Abstract

ABSTRACT The rotation of a magnetized accreting neutron star (NS) in a binary system is described by its spin period and two angles: spin inclination α with respect to the orbital momentum and magnetic angle χ between the spin and the magnetic moment. Magnetospheric accretion spins the NS up and adjusts its rotation axis, decreasing α to nearly perfect alignment. Its effect upon the magnetic angle is more subtle and relatively unstudied. In this work, we model the magnetic angle evolution of a rigid spherical accreting NS. We find that the torque spinning the NS up may affect the magnetic angle while both α and χ significantly deviate from zero, and the spin-up torque varies with the phase of the spin period. As the rotation axis of the NS is being aligned with the spin-up torque, the magnetic axis becomes misaligned with the rotation axis. Under favourable conditions, magnetic angle may increase by Δχ ∼ 15°−20°. This orthogonalization may be an important factor in the evolution of millisecond pulsars, as it partially compensates the χ decrease potentially caused by pulsar torques. If the direction of the spin-up torque changes randomly with time, as in wind-fed high-mass X-ray binaries, both the rotation axis of the NS and its magnetic axis become involved in a non-linear random-walk evolution. The ultimate attractor of this process is a bimodal distribution in χ peaking at χ = 0° and χ = 90°.

Funder

Kazan Federal University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3