Constraining the FRB mechanism from scintillation in the host galaxy

Author:

Kumar Pawan1,Beniamini Paz234ORCID,Gupta Om1ORCID,Cordes James M5

Affiliation:

1. Department of Astronomy, University of Texas at Austin , Austin, TX 78712 , USA

2. Department of Natural Sciences, The Open University of Israel , P.O Box 808, Ra’anana 4353701 , Israel

3. Astrophysics Research Center of the Open university (ARCO), The Open University of Israel , PO Box 808, Ra’anana 4353701 , Israel

4. Department of Physics, The George Washington University , 725 21st Street NW, Washington, DC 20052 , USA

5. Astronomy Department, Cornell University , Ithaca, NY 14853 , USA

Abstract

ABSTRACT Most fast radio burst (FRB) models can be divided into two groups based on the distance of the radio emission region from the central engine. The first group of models, the so-called ‘nearby’ or magnetospheric models, invoke FRB emission at distances of 109 cm or less from the central engine, while the second ‘far-away’ models involve emission from distances of 1011 cm or greater. The lateral size for the emission region for the former class of models (≲107 cm) is much smaller than the second class of models (≳109 cm). We propose that an interstellar scattering screen in the host galaxy is well-suited to differentiate between the two classes of models, particularly based on the level of modulations in the observed intensity with frequency, in the regime of strong diffractive scintillation. This is because the diffractive length scale for the host galaxy’s interstellar medium scattering screen is expected to lie between the transverse emission-region sizes for the ‘nearby’ and the ‘far-away’ class of models. Determining the strength of flux modulation caused by scintillation (scintillation modulation index) across the scintillation bandwidth (∼1/2πδts) would provide a strong constraint on the FRB radiation mechanism when the scatter broadening (δts) is shown to be from the FRB host galaxy. The scaling of the scintillation bandwidth as ∼ν4.4 may make it easier to determine the modulation index at ≳ 1 GHz.

Funder

United States-Israel Binational Science Foundation

BSF

NSF

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3