Eliminating polarization leakage effect for neutral hydrogen intensity mapping with deep learning

Author:

Gao Li-Yang1ORCID,Li Yichao1ORCID,Ni Shulei1ORCID,Zhang Xin123ORCID

Affiliation:

1. Key Laboratory of Cosmology and Astrophysics (Liaoning) & College of Sciences, Northeastern University , Shenyang 110819 , China

2. Key Laboratory of Data Analytics and Optimization for Smart Industry (Ministry of Education), Northeastern University , Shenyang 110819 , China

3. National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University , Shenyang 110819 , China

Abstract

ABSTRACT The neutral hydrogen (H i) intensity mapping (IM) survey is regarded as a promising approach for cosmic large-scale structure studies. A major issue for the H i IM survey is to remove the bright foreground contamination. A key to successfully removing the bright foreground is to well control or eliminate the instrumental effects. In this work, we consider the instrumental effects of polarization leakage and use the U-Net approach, a deep learning-based foreground removal technique, to eliminate the polarization leakage effect. The thermal noise is assumed to be a subdominant factor compared with the polarization leakage for future H i IM surveys and ignored in this analysis. In this method, the principal component analysis (PCA) foreground subtraction is used as a pre-processing step for the U-Net foreground subtraction. Our results show that the additional U-Net processing could either remove the foreground residual after the conservative PCA subtraction or compensate for the signal loss caused by the aggressive PCA pre-processing. Finally, we test the robustness of the U-Net foreground subtraction technique and show that it is still reliable in the case of existing constraint error on H i fluctuation amplitude.

Funder

National SKA Programme of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3