Stringent constraint on the radio signal from dark matter annihilation in dwarf spheroidal galaxies using the TGSS

Author:

Basu Arghyadeep1,Roy Nirupam2,Choudhuri Samir3,Datta Kanan K1,Sarkar Debajyoti1

Affiliation:

1. Department of Physics, Presidency University, Kolkata 700073, India

2. Department of Physics, Indian Institute of Science, Bangalore 560012, India

3. Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

Abstract

ABSTRACT Weakly interacting massive particles (WIMPs) are considered to be one of the favoured dark matter candidates. Searching for any detectable signal due to the annihilation and decay of WIMPs over the entire electromagnetic spectrum has become a matter of interest for the last few decades. WIMP annihilation to Standard Model particles gives rise to a possibility of detection of this signal at low radio frequencies via synchrotron radiation. Dwarf spheroidal (dSphs) galaxies are expected to contain a huge amount of dark matter which makes them promising targets to search for such large scale diffuse radio emission. In this work, we present a stacking analysis of 23 dSph galaxies observed at low frequency (147.5 MHz) as part of the TIFR-GMRT Sky Survey (TGSS). The non-detection of any signal from these stacking exercises put very tight constraints on the dark matter parameters. The best limit comes from the novel method of stacking after scaling the radio images of the individual dSph galaxy fields after scaling them by the respective half-light radius. The constraint on the thermally averaged cross-section is below the thermal relic cross-section value over a range of WIMP mass for reasonable choices of relevant astrophysical parameters. Such analysis, using future deeper observation of individual targets as well as stacking, can potentially reveal more about the WIMP dark matter properties.

Funder

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3