Density profile of a self-gravitating polytropic turbulent fluid in a rotating disc near to the cloud core

Author:

Donkov S1,Stefanov I Zh2,Veltchev T V34ORCID,Klessen R S45ORCID

Affiliation:

1. Institute of Astronomy and NAO, Bulgarian Academy of Sciences , Blvd. Tsarigradsko Shosse 72, 1000 Sofia , Bulgaria

2. Department of Applied Physics, Technical University , 8 Kliment Ohridski Blvd., 1000 Sofia , Bulgaria

3. Faculty of Physics, University of Sofia , 5 James Bourchier Blvd., 1164 Sofia , Bulgaria

4. Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg , Albert-Ueberle-Str. 2, D-69120 Heidelberg , Germany

5. Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg , Im Neuenheimer Feld 205, D-69120 Heidelberg , Germany

Abstract

ABSTRACT We obtain two equations (following from two different approaches) for the density profile in a self-gravitating polytropic cylindrically symmetric and rotating turbulent gas disc. The adopted physical picture is appropriate to describe the conditions near to the cloud core where the equation of state of the gas changes from isothermal (in the outer cloud layers) to one of ‘hard polytrope’, and the symmetry changes from spherical to cylindrical. On the assumption of steady state, as the accreting matter passes through all spatial scales, we show that the total energy per unit mass is an invariant with respect to the fluid flow. The obtained equation describes the balance of the kinetic, thermal, and gravitational energy of a fluid element. We also introduce a method for approximating density profile solutions (in a power-law form), leading to the emergence of three different regimes. We apply, as well, dynamical analysis of the motion of a fluid element. Only one of the regimes is in accordance with the two approaches (energy and force balance). It corresponds to a density profile of a slope −2, polytropic exponent 3/2, and sub-Keplerian rotation of the disc, when the gravity is balanced by the thermal pressure. It also matches with some observations and numerical works and, in particular, leads to a second power-law tail (of a slope ∼−1) of the density distribution function in dense, self-gravitating cloud regions.

Funder

Ministry of Education and Science

DFG

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3