ExoPlaSim: Extending the Planet Simulator for exoplanets

Author:

Paradise Adiv1ORCID,Macdonald Evelyn2ORCID,Menou Kristen123,Lee Christopher2,Fan Bo Lin1

Affiliation:

1. David A. Dunlap Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4, Canada

2. Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada

3. Physics and Astrophysics Group, Department of Physical and Environmental Sciences, University of Toronto, Scarborough, ON M1C 1A4, Canada

Abstract

ABSTRACTThe discovery of a large number of terrestrial exoplanets in the habitable zones of their stars, many of which are qualitatively different from Earth, has led to a growing need for fast and flexible 3D climate models, which could model such planets and explore multiple possible climate states and surface conditions. We respond to that need by creating ExoPlaSim, a modified version of the Planet Simulator (PlaSim) that is designed to be applicable to synchronously rotating terrestrial planets, planets orbiting stars with non-solar spectra, and planets with non-Earth-like surface pressures. In this paper, we describe our modifications, present validation tests of ExoPlaSim’s performance against other GCMs, and demonstrate its utility by performing two simple experiments involving hundreds of models. We find that ExoPlaSim agrees qualitatively with more-sophisticated GCMs such as ExoCAM, LMDG, and ROCKE-3D, falling within the ensemble distribution on multiple measures. The model is fast enough that it enables large parameter surveys with hundreds to thousands of models, potentially enabling the efficient use of a 3D climate model in retrievals of future exoplanet observations. We describe our efforts to make ExoPlaSim accessible to non-modellers, including observers, non-computational theorists, students, and educators through a new Python API and streamlined installation through pip, along with online documentation.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3