Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations

Author:

Nelson Erica J12,Tacchella Sandro2ORCID,Diemer Benedikt3ORCID,Leja Joel456ORCID,Hernquist Lars2,Whitaker Katherine E78,Weinberger Rainer2ORCID,Pillepich Annalisa9ORCID,Nelson Dylan10ORCID,Terrazas Bryan A2ORCID,Nevin Rebecca2,Brammer Gabriel B811,Burkhart Blakesley1213ORCID,Cochrane Rachel K2ORCID,van Dokkum Pieter14,Johnson Benjamin D2,Marinacci Federico15ORCID,Mowla Lamiya16ORCID,Pakmor Rüdiger17ORCID,Skelton Rosalind E18,Speagle Joshua1619,Springel Volker17ORCID,Torrey Paul20ORCID,Vogelsberger Mark21ORCID,Wuyts Stijn22

Affiliation:

1. Department for Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309, USA

2. Center for Astrophysics | Harvard–Smithsonian, Cambridge, MA 02138, USA

3. Department of Astronomy, University of Maryland, College Park, MD 20742, USA

4. Department of Astronomy & Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA

5. Institute for Computational & Data Sciences, The Pennsylvania State University, University Park, PA 16801, USA

6. Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA

7. Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA

8. Cosmic Dawn Center (DAWN), Copenhagen, 2200, Denmark

9. Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany

10. Institut für theoretische Astrophysik, Zentrum für Astronomie, Universität Heidelberg, Albert-Ueberle-Str 2, D-69120 Heidelberg, Germany

11. Niels Bohr Institute, University of Copenhagen, Jagtvej 128, København N DK-2200, Denmark

12. Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Rd, Piscataway, NJ 08854, USA

13. Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA

14. Astronomy Department, Yale University, New Haven, CT 06511, USA

15. Department of Physics and Astronomy “Augusto Righi”, University of Bologna, via Gobetti 93/2, I-40129 Bologna, Italy

16. Dunlap Institute for Astronomy & Astrophysics, University of Toronto, Toronto, ON M5S 3H4, Canada

17. Max-Planck-Institut für Astrophysik, D-85740 Garching bei München, Germany

18. South African Astronomical Observatory, Cape Town 7935, South Africa

19. Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada

20. Department of Astronomy, University of Florida, Gainesville, FL 32611, USA

21. Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

22. Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK

Abstract

ABSTRACT We compare the star-forming main sequence (SFMS) of galaxies – both integrated and resolved on 1 kpc scales – between the high-resolution TNG50 simulation of IllustrisTNG and observations from the 3D-HST slitless spectroscopic survey at z ∼ 1. Contrasting integrated star formation rates (SFRs), we find that the slope and normalization of the star-forming main sequence in TNG50 are quantitatively consistent with values derived by fitting observations from 3D-HST with the Prospector Bayesian inference framework. The previous offsets of 0.2–1 dex between observed and simulated main-sequence normalizations are resolved when using the updated masses and SFRs from Prospector. The scatter is generically smaller in TNG50 than in 3D-HST for more massive galaxies with M*> 1010 M⊙, by ∼10–40 per cent, after accounting for observational uncertainties. When comparing resolved star formation, we also find good agreement between TNG50 and 3D-HST: average specific star formation rate (sSFR) radial profiles of galaxies at all masses and radii below, on, and above the SFMS are similar in both normalization and shape. Most noteworthy, massive galaxies with M*> 1010.5 M⊙, which have fallen below the SFMS due to ongoing quenching, exhibit a clear central SFR suppression, in both TNG50 and 3D-HST. In contrast, the original Illustris simulation and a variant TNG run without black hole kinetic wind feedback, do not reproduce the central SFR profile suppression seen in data. In TNG, inside-out quenching is due to the supermassive black hole (SMBH) feedback model operating at low accretion rates.

Funder

Smithsonian Astrophysical Observatory

Simons Foundation

Danish National Research Foundation

NSF

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3