The role of resonant plasma instabilities in the evolution of blazar-induced pair beams

Author:

Perry Roy1,Lyubarsky Yuri1

Affiliation:

1. Physics Department, Ben-Gurion University, P.O.B. 653, Beer-Sheva 84105, Israel

Abstract

ABSTRACT The fate of relativistic pair beams produced in the intergalactic medium by very high energy emission from blazars remains controversial in the literature. The possible role of resonance beam plasma instability has been studied both analytically and numerically but no consensus has been reached. In this paper, we thoroughly analyse the development of this type of instability. This analysis takes into account that a highly relativistic beam loses energy only due to interactions with the plasma waves propagating within the opening angle of the beam (we call them parallel waves), whereas excitation of oblique waves results merely in an angular spreading of the beam, which reduces the instability growth rate. For parallel waves, the growth rate is a few times larger than for oblique ones, so they grow faster than oblique waves and drain energy from the beam before it expands. However, the specific property of extragalactic beams is that they are extraordinarily narrow; the opening angle is only Δθ ∼ 10−6 to 10−5. In this case, the width of the resonance for parallel waves, ∝Δθ2, is too small for them to grow in realistic conditions. We perform both analytical estimates and numerical simulations in the quasi-linear regime. These show that for extragalactic beams, the growth of the waves is incapable of taking a significant portion of the beam’s energy. This type of instability could at best lead to an expansion of the beam by some factor but the beam’s energy remains nearly intact.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3