Double neutron star formation via consecutive type II supernova explosions

Author:

Fröhlich Viktória123,Regály Zsolt12,Vinkó József1245

Affiliation:

1. Konkoly Observatory, Research Centre for Astronomy and Earth Science , Konkoly-Thege Miklós 15–17, H-1121 Budapest , Hungary

2. CSFK, MTA Centre of Excellence , Budapest, Konkoly Thege Miklós út 15–17, H-1121 , Hungary

3. Eötvös Loránd University , Pázmány Péter sétány 1/A, H-1117 Budapest , Hungary

4. ELTE Eötvös Loránd University, Institute of Physics , Pázmány Péter sétány 1/A, H-1117 Budapest , Hungary

5. Institute of Physics, University of Szeged , Dóm tér 9, Szeged, H-6720 , Hungary

Abstract

ABSTRACT Since the discovery of the first double neutron star (DNS) system, the number of these exotic binaries has reached 15. Here we investigate a channel of DNS formation in binary systems with components above the mass limit of Type II supernova explosion (SN II), that is, 8M⊙. We apply a spherically symmetric homologous envelope expansion model to account for mass-loss, and follow the dynamical evolution of the system numerically with a high-precision integrator. The first SN occurs in a binary system whose orbital parameters are pre-defined, then, the homologous expansion model is applied again in the newly formed system. Analysing 1 658 880 models we find that DNS formation via subsequent SN II explosions requires a fine-tuning of the initial parameters. Our model can explain DNS systems with a separation greater than 2.95 au. The eccentricity of the DNS systems spans a wide range thanks to the orbital circularization effect due to the second SN II explosion. The eccentricity of the DNS is sensitive to the initial eccentricity of the binary progenitor and the orbital position of the system preceding the second explosion. In agreement with the majority of the observations of DNS systems, we find the system centre-of-mass velocities to be less than 60 km s−1. Neutron stars that become unbound in either explosion gain a peculiar velocity in the range of 0.02 − 240 km s−1. In our model, the formation of tight DNS systems requires a post-explosion orbit-shrinking mechanism, possibly driven by the ejected envelopes.

Funder

ESA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3