Controlling systematics in ground-based CMB surveys with partial boresight rotation

Author:

Thomas Daniel B1,McCallum Nialh1,Brown Michael L1

Affiliation:

1. Jodrell Bank Centre for Astrophysics, School of Physics & Astronomy, The University of Manchester, Manchester M13 9PL, UK

Abstract

ABSTRACT Future CMB experiments will require exquisite control of systematics in order to constrain the B-mode polarization power spectrum. One class of systematics that requires careful study is instrumental systematics. The potential impact of such systematics is most readily understood by considering analysis pipelines based on pair differencing. In this case, any differential gain, pointing or beam ellipticity between the two detectors in a pair can result in intensity leakage into the B-mode spectrum, which needs to be controlled to a high precision due to the much greater magnitude of the total intensity signal as compared to the B-mode signal. One well-known way to suppress such systematics is through careful design of the scan-strategy, in particular making use of any capability to rotate the instrument about its pointing (boresight) direction. Here, we show that the combination of specific choices of such partial boresight rotation angles with redundancies present in the scan strategy is a powerful approach for suppressing systematic effects. This mitigation can be performed in analysis in advance of map-making and, in contrast to other approaches (e.g. deprojection or filtering), results in no signal loss. We demonstrate our approach explicitly with time ordered data simulations relevant to next-generation ground-based CMB experiments, using deep and wide scan strategies appropriate for experiments based in Chile. These simulations show a reduction of multiple orders of magnitude in the spurious B-mode signal arising from differential gain and differential pointing systematics.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3