Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks

Author:

Cheng Ting-Yun12ORCID,Conselice Christopher J23,Aragón-Salamanca Alfonso2,Aguena M45ORCID,Allam S6,Andrade-Oliveira F57,Annis J6,Bluck A F L89,Brooks D10,Burke D L1112,Carrasco Kind M1314,Carretero J15ORCID,Choi A16,Costanzi M171819,da Costa L N520,Pereira M E S21,De Vicente J22,Diehl H T6,Drlica-Wagner A62324,Eckert K25,Everett S26,Evrard A E2127ORCID,Ferrero I28ORCID,Fosalba P2930ORCID,Frieman J624,García-Bellido J31,Gerdes D W2127,Giannantonio T932,Gruen D111233ORCID,Gruendl R A1314,Gschwend J520,Gutierrez G6,Hinton S R34ORCID,Hollowood D L26ORCID,Honscheid K1635,James D J36,Krause E37,Kuehn K3839,Kuropatkin N6,Lahav O10,Maia M A G520,March M25ORCID,Menanteau F1314,Miquel R1540,Morgan R41,Paz-Chinchón F1332,Pieres A520,Plazas Malagón A A42,Roodman A1112,Sanchez E22,Scarpine V6,Serrano S2930,Sevilla-Noarbe I22,Smith M43ORCID,Soares-Santos M21,Suchyta E44ORCID,Swanson M E C13,Tarle G21,Thomas D45ORCID,To C111233

Affiliation:

1. Centre of Extragalactic Astronomy, Durham University, Stockton Road, Durham DH1 3LE, UK

2. School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK

3. Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

4. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil

5. Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil

6. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA

7. Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, 01140-070, Brazil

8. Cavendish Laboratory Astrophysics Group, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

9. Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

10. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK

11. Kavli Institute for Particle Astrophysics & Cosmology, Stanford University, PO Box 2450, Stanford, CA 94305, USA

12. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

13. Center for Astrophysical Surveys, National Center for Supercomputing Applications, 1205 West Clark Street, Urbana, IL 61801, USA

14. Department of Astronomy, University of Illinois at Urbana–Champaign, 1002 W. Green Street, Urbana, IL 61801, USA

15. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain

16. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA

17. Astronomy Unit, Department of Physics, University of Trieste, Via Tiepolo 11, I-34131 Trieste, Italy

18. INAF – Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34143 Trieste, Italy

19. Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34014 Trieste, Italy

20. Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil

21. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

22. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, 28040, Spain

23. Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA

24. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

25. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

26. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA

27. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA

28. Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, NO-0315 Oslo, Norway

29. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain

30. Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain

31. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain

32. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

33. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA

34. School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia

35. Department of Physics, The Ohio State University, Columbus, OH 43210, USA

36. Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

37. Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA

38. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia

39. Lowell Observatory, 1400 Mars Hill Road, Flagstaff, AZ 86001, USA

40. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain

41. Physics Department, University of Wisconsin–Madison, 2320 Chamberlin Hall, 1150 University Avenue Madison, WI 53706-1390, USA

42. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA

43. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

44. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

45. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK

Abstract

ABSTRACT We present in this paper one of the largest galaxy morphological classification catalogues to date, including over 20 million galaxies, using the Dark Energy Survey (DES) Year 3 data based on convolutional neural networks (CNNs). Monochromatic i-band DES images with linear, logarithmic, and gradient scales, matched with debiased visual classifications from the Galaxy Zoo 1 (GZ1) catalogue, are used to train our CNN models. With a training set including bright galaxies (16 ≤ i < 18) at low redshift (z < 0.25), we furthermore investigate the limit of the accuracy of our predictions applied to galaxies at fainter magnitude and at higher redshifts. Our final catalogue covers magnitudes 16 ≤ i < 21, and redshifts z < 1.0, and provides predicted probabilities to two galaxy types – ellipticals and spirals (disc galaxies). Our CNN classifications reveal an accuracy of over 99 per cent for bright galaxies when comparing with the GZ1 classifications (i < 18). For fainter galaxies, the visual classification carried out by three of the co-authors shows that the CNN classifier correctly categorizes discy galaxies with rounder and blurred features, which humans often incorrectly visually classify as ellipticals. As a part of the validation, we carry out one of the largest examinations of non-parametric methods, including ∼100 ,000 galaxies with the same coverage of magnitude and redshift as the training set from our catalogue. We find that the Gini coefficient is the best single parameter discriminator between ellipticals and spirals for this data set.

Funder

University of Nottingham

STFC

U.S. Department of Energy

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3