Affiliation:
1. Department of Physics, University of Wisconsin–Madison, 1150 University Avenue, Madison, WI 53706, USA
2. Space Science Institute, Boulder, CO 80301, USA
Abstract
ABSTRACT
We develop a kinetic theory for the electron strahl, a beam of energetic electrons which propagate from the sun along the Parker-spiral-shaped magnetic field lines. Assuming a Maxwellian electron distribution function in the near-sun region where the plasma is collisional, we derive the strahl distribution function at larger heliospheric distances. We consider the two most important mechanisms that broaden the strahl: Coulomb collisions and interactions with oblique ambient whistler turbulence (anomalous diffusion). We propose that the energy regimes where these mechanisms are important are separated by an approximate threshold, ${\cal E}_\mathrm{ c}$; for the electron kinetic energies ${\cal E}\,\lt\, {\cal E}_\mathrm{ c}$ the strahl width is mostly governed by Coulomb collisions, while for ${\cal E}\,\gt\, {\cal E}_\mathrm{ c}$ by interactions with the whistlers. The Coulomb broadening decreases as the electron energy increases; the whistler-dominated broadening, on the contrary, increases with energy and it can lead to efficient isotropization of energetic electrons and to the formation of the electron halo. The threshold energy ${\cal E}_\mathrm{ c}$ is relatively high in the regions closer to the sun, and it gradually decreases with the distance, implying that the anomalous diffusion becomes progressively more important at large heliospheric distances. At 1 au, we estimate the energy threshold to be about ${\cal E}_\mathrm{ c}\,\sim\, 200\, {\rm eV}$.
Funder
National Science Foundation
National Aeronautics and Space Administration
U.S. Department of Energy
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献