The formation of transiting circumplanetary debris discs from the disruption of satellite systems during planet–planet scattering

Author:

Mustill Alexander J12ORCID,Davies Melvyn B3,Kenworthy Matthew A4ORCID

Affiliation:

1. Lund Observatory, Division of Astrophysics, Department of Physics, Lund University , Box 118, SE-221 00 Lund , Sweden

2. Lund Observatory, Department of Astronomy & Theoretical Physics, Lund University , Box 43, SE-221 00 Lund , Sweden

3. Centre for Mathematical Sciences, Lund University , Box 118, SE-221 00 Lund , Sweden

4. Leiden Observatory, University of Leiden , PO Box 9513, NL-2300 RA Leiden , the Netherlands

Abstract

ABSTRACT Several stars show deep transits consistent with discs of roughly $1\mathrm{\, R}_\odot$ seen at moderate inclinations, likely surrounding planets on eccentric orbits. We show that this configuration arises naturally as a result of planet–planet scattering when the planets possess satellite systems. Planet–planet scattering explains the orbital eccentricities of the discs’ host bodies, while the close encounters during scattering lead to the exchange of satellites between planets and/or their destabilization. This leads to collisions between satellites and their tidal disruption close to the planet. Both of these events lead to large quantities of debris being produced, which in time will settle into a disc such as those observed. The mass of debris required is comparable to a Ceres-sized satellite. Through N-body simulations of planets with clones of the Galilean satellite system undergoing scattering, we show that 90 per cent of planets undergoing scattering will possess debris from satellite destruction. Extrapolating to smaller numbers of satellites suggests that tens of per cent of such planets should still possess circumplanetary debris discs. The debris trails arising from these events are often tilted at tens of degrees to the planetary orbit, consistent with the inclinations of the observed discs. Disruption of satellite systems during scattering thus simultaneously explains the existence of debris, the tilt of the discs, and the eccentricity of the planets they orbit.

Funder

Swedish National Space Agency

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3