Balmer-series spectral lines for hydrogen atoms in parallel magnetic and electric fields of white dwarfs

Author:

Zhao L B1ORCID,Liu F L2

Affiliation:

1. Department of Physics and Astronomy, Guizhou University, Guiyang 550025, China

2. College of Physical Sciences and Technology, Heilongjiang University, Harbin 150080, China

Abstract

ABSTRACT We extended the two-dimensional B-spline approach recently developed to investigate the influence of a strong electric field on atomic structures and spectra for hydrogen atoms in magnetic fields of white dwarfs. Spectral lines for hydrogen in parallel magnetic and electric fields have been calculated. Wavelengths and oscillator strengths are presented for 14 Balmer α transitions as a function of magnetic and electric fields. The magnetic and electric field strengths involved span a scope, respectively, from around 23.5 to 2350 MG, and from 0 to 108 V/m. Our calculations show that the shift of Balmer-series spectral lines induced by a strong electric field reduces as the magnetic field strength increases. The obtained energy levels, wavelengths, and oscillator strengths are compared to available results in the literature, and excellent agreement was discovered. The spectral data reported in this paper can be applied to interpret the shifts of spectral lines of hydrogen in magnetic white dwarfs due to the presence of electric fields, and to predict additional spectral lines dipole-forbidden in a pure magnetic field.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3