Stellar wind yields of very massive stars

Author:

Higgins Erin R1,Vink Jorick S1ORCID,Hirschi Raphael23,Laird Alison M4,Sabhahit Gautham N1

Affiliation:

1. Armagh Observatory and Planetarium , College Hill, Armagh BT61 9DG , UK

2. Astrophysics Group, Keele University , Keele, Staffordshire ST5 5BG , UK

3. Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo , 5-1-5 Kashiwanoha, Kashiwa 277-8583 , Japan

4. School of Physics, Engineering and Technology, University of York , York YO10 5DD , UK

Abstract

ABSTRACT The most massive stars provide an essential source of recycled material for young clusters and galaxies. While very massive stars (VMSs, M>100 $\rm {\rm M}_{\odot }$) are relatively rare compared to O stars, they lose disproportionately large amounts of mass already from the onset of core H-burning. VMS have optically thick winds with elevated mass-loss rates in comparison to optically thin standard O-star winds. We compute wind yields and ejected masses on the main sequence, and we compare enhanced mass-loss rates to standard ones. We calculate solar metallicity wind yields from MESA stellar evolution models in the range 50–500 $\rm {\rm M}_{\odot }$, including a large nuclear network of 92 isotopes, investigating not only the CNO-cycle, but also the Ne–Na and Mg–Al cycles. VMS with enhanced winds eject 5–10 times more H-processed elements (N, Ne, Na, Al) on the main sequence in comparison to standard winds, with possible consequences for observed anticorrelations, such as C–N and Na–O, in globular clusters. We find that for VMS 95 per cent of the total wind yields is produced on the main sequence, while only ∼ 5 per cent is supplied by the post-main sequence. This implies that VMS with enhanced winds are the primary source of 26Al, contrasting previous works where classical Wolf–Rayet winds had been suggested to be responsible for galactic 26Al enrichment. Finally, 200 $\rm {\rm M}_{\odot }$ stars eject 100 times more of each heavy element in their winds than 50 $\rm {\rm M}_{\odot }$ stars, and even when weighted by an IMF their wind contribution is still an order of magnitude higher than that of 50 $\rm {\rm M}_{\odot }$ stars.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3