Ices on pebbles in protoplanetary discs

Author:

Topchieva A1ORCID,Molyarova T1,Akimkin V1,Maksimova L1ORCID,Vorobyov E12

Affiliation:

1. Institute of Astronomy, Russian Academy of Sciences , 48 Pyatnitskaya St, Moscow 119017 , Russia

2. Research Institute of Physics, Southern Federal University , Rostov-on-Don 344090 , Russia

Abstract

ABSTRACT The formation of solid macroscopic grains (pebbles) in protoplanetary discs is the first step towards planet formation. We aim to study the distribution of pebbles and the chemical composition of their ice mantles in a young protoplanetary disc. We use the two-dimensional hydrodynamical code feosad in the thin-disc approximation, which is designed to model the global evolution of a self-gravitating viscous protoplanetary disc taking into account dust coagulation and fragmentation, thermal balance, and phase transitions and transport of the main volatiles (H2O, CO2, CH4, and CO), which can reside in the gas, on small dust ($\lt 1\, \mu\mathrm{ m}$), on grown dust ($\gt 1\, \mu\mathrm{ m}$) and on pebbles. We model the dynamics of the protoplanetary disc from the cloud collapse to the 500 kyr moment. We determine the spatial distribution of pebbles and composition of their ice mantles and estimate the mass of volatiles on pebbles, grown dust, and small dust. We show that pebbles form as early as 50 kyr after the disc formation and exist until the end of simulation (500 kyr), providing prerequisites for planet formation. All pebbles formed in the model are covered by icy mantles. Using a model considering accretion and desorption of volatiles on to dust/pebbles, we find that the ice mantles on pebbles consist mainly of H2O and CO2, and are carbon-depleted compared to gas and ices on small and grown dust, which contain more CO and CH4. This suggests a possible dominance of oxygen in the composition of planets formed from pebbles under these conditions.

Funder

Russian Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3