High-redshift quasars at z ≥ 3 – I. Radio spectra

Author:

Sotnikova Yu1,Mikhailov A1,Mufakharov T123,Mingaliev M12,Bursov N1,Semenova T1,Stolyarov V124,Udovitskiy R1,Kudryashova A1,Erkenov A1

Affiliation:

1. Special Astrophysical Observatory of RAS, Nizhny Arkhyz 369167, Russia

2. Kazan Federal University, 18 Kremlyovskaya St, Kazan 420008, Russia

3. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

4. Astrophysics Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK

Abstract

ABSTRACT We present the radio properties of optically selected quasars with z ≥ 3. The complete sample consists of 102 quasars with a flux density level S1.4 ≥ 100 mJy in a declination range −35° ≤ Dec. ≤ +49°. The observations were obtained in 2017–2020 using the radio telescope RATAN-600. We measured flux densities at six frequencies 1.2, 2.3, 4.7, 8.2, 11.2, and 22 GHz quasi-simultaneously with uncertainties of 9–31 per cent. The detection rate is 100, 89, and 46 per cent at 4.7, 11.2, and 22 GHz, respectively. We have analysed the averaged radio spectra of the quasars based on the RATAN and literature data. We classify 46 per cent of radio spectra as peaked-spectrum, 24 per cent as flat, and none as ultra-steep spectra (α ≤ −1.1). The multifrequency data reveal that a peaked spectral shape (PS) is a common feature for bright high-redshift quasars. This indicates the dominance of bright compact core emission and the insignificant contribution of extended optically thin kpc-scale components in observed radio spectra. Using these new radio data, the radio loudness log  R was estimated for 71 objects with a median value of 3.5, showing that the majority of the quasars are highly radio-loud with log  R > 2.5. We have not found any significant correlation between z and α. Several new megahertz- peaked spectrum (MPS) and gigahertz- peaked spectrum (GPS) candidates are suggested. Further studies of their variability and additional low-frequency observations are needed to classify them precisely.

Funder

Ministry of Science and Higher Education of the Russian Federation

NASA

NED

Jet Propulsion Laboratory

California Institute of Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3