Estimating optimum launch velocity of electrostatically detached dust particles over sunlit locations on Moon

Author:

Mishra S K1ORCID,Bhatt A2

Affiliation:

1. Planetary Sciences Division, Physical Research Laboratory (PRL) , Ahmedabad 380009, India

2. Department of Physics, Indian Institute of Technology Gandhinagar (IITGn) , Gandhinagar - 382055, India

Abstract

ABSTRACT Microscopic fluctuations over sunlit locations on Moon due to dominant photoelectric charging might induce a sufficient fluctuating electric field that can electrostatically detach the overlying charged dust by overcoming surface adhesion and lunar gravity. A formulation based on the dynamical evolution of the statistical variables, viz., the mean charge and the variance, at microscopic scale is established to calculate the local charge and electric field fluctuations and illustrate this effect. The formulation has been coupled with the charged particle dynamics to derive the optimum launch velocity of the dust particles near the surface just after detachment. Fowler's treatment of the photoemission, dominant Extreme Ultraviolet Lyman α radiation of the solar spectrum and subsequent collection of the emitted photoelectrons, measured particle size distribution of the regolith sample, and typical solar wind plasma have been consistently accounted for illustrating the concept. Our analysis suggests that the intense fluctuations in the electric field locally detach the submicron-charged particles with a launch velocity of a few ms−1–for instance, the charge fluctuations might induce ∼ 10 Mv m−1 field that can launch 100 nm particles with a speed of ∼5 m s−1.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3