AGB winds in interacting binary stars

Author:

Bermúdez-Bustamante Luis C1ORCID,García-Segura G1,Steffen W1,Sabin L1ORCID

Affiliation:

1. Instituto de Astronomía, Universidad Nacional Autónoma de México, km 107 Carr. Tijuana-Ensenada, 22860 Ensenada, B. C., Mexico

Abstract

ABSTRACT We perform numerical simulations to investigate the stellar wind from interacting binary stars. Our aim is to find analytical formulae describing the outflow structure. In each binary system the more massive star is in the asymptotic giant branch (AGB) and its wind is driven by a combination of pulsations in the stellar surface layers and radiation pressure on dust, while the less massive star is in the main sequence. Time averages of density and outflow velocity of the stellar wind are calculated and plotted as profiles against distance from the centre of mass and colatitude angle. We find that mass is lost mainly through the outer Lagrangian point L2. The resultant outflow develops into a spiral at low distances from the binary. The outflowing spiral is quickly smoothed out by shocks and becomes an excretion disc at larger distances. This leads to the formation of an outflow structure with an equatorial density excess, which is greater in binaries with smaller orbital separation. The pole-to-equator density ratio reaches a maximum value of ∼105 at Roche lobe overflow state. We also find that the gas stream leaving L2 does not form a circumbinary ring for stellar mass ratios above 0.78, when radiation pressure on dust is taken into account. Analytical formulae are obtained by curve fitting the two-dimensional, azimuthally averaged density and outflow velocity profiles. The formulae can be used in future studies to set-up the initial outflow structure in hydrodynamic simulations of common-envelope evolution and formation of planetary nebulae.

Funder

CONACYT

DGAPA-PAPIIT

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3