Ridges in the Dark Energy Survey for cosmic trough identification

Author:

Moews Ben1ORCID,Schmitz Morgan A2,Lawler Andrew J3ORCID,Zuntz Joe1,Malz Alex I4,de Souza Rafael S5,Vilalta Ricardo6,Krone-Martins Alberto78,Ishida Emille E O9,

Affiliation:

1. Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK

2. Department of Astrophysical Sciences, Princeton University, 4 Ivy Ln., Princeton, NJ08544, USA

3. Department of Statistics, Baylor University, One Bear Place #97140, Waco, TX 76798, USA

4. Astronomical Institute, Ruhr-University Bochum, German Centre for Cosmological Lensing, Universitätsstr. 150, D-44801 Bochum, Germany

5. Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Rd., Shanghai 200030, China

6. Department of Computer Science, University of Houston, 4800 Calhoun Rd., Houston, TX 77004, USA

7. Donald Bren School of Information and Computer Sciences, University of California, Irvine, CA 92697, USA

8. CENTRA/SIM, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, P-1749-016, Lisboa, Portugal

9. Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France

Abstract

ABSTRACT Cosmic voids and their corresponding redshift-projected mass densities, known as troughs, play an important role in our attempt to model the large-scale structure of the Universe. Understanding these structures enables us to compare the standard model with alternative cosmologies, constrain the dark energy equation of state, and distinguish between different gravitational theories. In this paper, we extend the subspace-constrained mean shift algorithm, a recently introduced method to estimate density ridges, and apply it to 2D weak lensing mass density maps from the Dark Energy Survey Y1 data release to identify curvilinear filamentary structures. We compare the obtained ridges with previous approaches to extract trough structure in the same data, and apply curvelets as an alternative wavelet-based method to constrain densities. We then invoke the Wasserstein distance between noisy and noiseless simulations to validate the denoising capabilities of our method. Our results demonstrate the viability of ridge estimation as a precursor for denoising weak lensing observables to recover the large-scale structure, paving the way for a more versatile and effective search for troughs.

Funder

Centre National de la Recherche Scientifique

Max-Planck-Gesellschaft

Alexander von Humboldt-Stiftung

Fundação para a Ciência e a Tecnologia

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. sconce: a cosmic web finder for spherical and conic geometries;Monthly Notices of the Royal Astronomical Society;2022-10-08

2. Filaments of crime: Informing policing via thresholded ridge estimation;Decision Support Systems;2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3