Affiliation:
1. Department of Physics, Lorestan University, Khoramabad, 6815144316, Iran
2. Faculty of Symbiotic Systems Science, Fukushima University, Fukushima 960-1296, Japan
Abstract
ABSTRACT
We study the bulk flow of the local universe with Type Ia supernova data (a compilation of Union2 and Pantheon data) in the spatially flat homogeneous and isotropic space–time. In particular, we take the so-called QCDM models, which consist of cold dark matter (CDM) and a Q-component described by a scalar field with its self-interactions determined by an exponential potential. We use different cumulative redshift slices of the Union2 and Pantheon catalogues. A maximum-likelihood analysis of peculiar velocities confirms that, at low redshifts 0.015 < z < 0.1, the bulk flow is moving in the $l=272^{+17}_{-17}, b=33^{+12}_{-12}$, and $302^{+20}_{-20},3^{+10}_{-10}$ directions with $v _\mathrm{bulk} = 225^{+38}_{-35}$ and $246^{+64}_{-46}$ km s−1 for the Pantheon and Union2 data respectively, in good agreement with the direction of the cosmic microwave background dipole and with a number of previous studies at 1σ. However, for high redshifts 0.1 < z < 0.2, we get $v _\mathrm{bulk} = 708^{+110}_{-110}$ and $v_\mathrm{bulk}=1014^{+86}_{-114}\,\text{km\,s}^{-1}$ towards l = 318 ± 10°, b = −15 ± 9° and $l=254^{+16}_{-14},\ b=6^{+7}_{-10}$ for the Pantheon and Union2 data respectively. This indicates that for low redshifts our results are approximately consistent with the ΛCDM model; however, for high redshifts they disagree with ΛCDM and support the results of those studies that report a large bulk flow for the universe.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献