Stochastic processes for pulsar timing noise: fluctuations in the internal and external torques

Author:

Antonelli Marco12ORCID,Basu Avishek3ORCID,Haskell Brynmor2

Affiliation:

1. CNRS/IN2P3, Laboratoire de Physique Corpusculaire , F-14050 Caen, France

2. Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences , ul. Bartycka 18, PL-00-716 Warszawa, Poland

3. Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester , M13 9PL Manchester, United Kingdom

Abstract

Abstract Young pulsars deviate from a perfectly regular spin-down by two non-deterministic phenomena: impulsive glitches and timing noise. Both phenomena are interesting per se and may provide insights into the superfluid properties of neutron stars, but they also act as a barrier to high-precision pulsar timing and gravitational wave experiments. We study a minimal stochastic model to describe the spin-down of a multicomponent neutron star, with fluctuations in both the internal and external torques. The power spectral density and timing noise strength of this kind of model can be obtained analytically and compared with known results from pulsar timing observational campaigns. In particular, the presence of flat regions of the power spectral density can be interpreted as a signature of the presence of internal superfluid components. We also derive the expected scaling of the timing noise strength with the pulsar’s rotational parameters (or characteristic age). Therefore, the present framework offers a theoretical guideline to interpret the observed features of timing noise in both single pulsars and across the pulsar population.

Funder

COST

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constraints on Undetected Long-period Binaries in the Known Pulsar Population;The Astrophysical Journal;2023-06-29

2. Apparent dispersion in pulsar braking index measurements caused by timing noise;Monthly Notices of the Royal Astronomical Society;2023-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3