Interstellar scintillation of an extreme scintillator: PKS B1144−379

Author:

Said N M M12,Ellingsen S P1ORCID,Bignall H E2,Shabala S1ORCID,McCallum J N1,Reynolds C2

Affiliation:

1. School of Natural Sciences, University of Tasmania, Private Bag 37, Hobart, TAS 7001, Australia

2. CSIRO Astronomy and Space Science, P.O. Box 1130, Bentley, WA 6102, Australia

Abstract

ABSTRACT The University of Tasmania Ceduna radio telescope has been used to investigate rapid variability in the radio flux density of the BL Lac object PKS B1144−379 at 6.7 GHz. High-cadence monitoring of this extreme scintillator was carried out over a period of approximately 9 yr, between 2003 and 2011. We have used structure functions created from the intensity time-series to determine the characteristic time-scale of the variability. The characteristic time-scale is consistently observed to increase during certain periods of each year, demonstrating the annual cycle expected for scintillation through an interstellar scattering screen. The best-fitting annual cycle model for each year suggests that the scintillation pattern has an anisotropic structure and that the upper limit of its scattering screen is at a distance of ∼0.84 kpc. Higher anisotropy in some of the annual cycle fits suggests that changes in the intrinsic source structure might be influencing the variability time-scale. We found a prominent annual cycle is only present in the variability time-scale for certain years, where other evidence suggests that the core is compact. From our measurements, we calculated that the core angular size varied between 5.65 and 15.90 μas (0.05–0.13 pc). The core component was found to be at its most compact during two flares in the total flux density, which were observed in 2005 and 2008. We conclude that the long-term variability in the radio flux density of PKS B1144−379 is due to intrinsic changes in the source and that these affect our ability to measure an annual cycle in its variability time-scale.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3