A numerical study of near-Earth asteroid family orbital dispersion

Author:

Humpage A12ORCID,Christou A A2ORCID

Affiliation:

1. Department of Physics and Astronomy, Queen’s University Belfast , University Road, Belfast BT7 1NN , UK

2. Armagh Observatory and Planetarium , College Hill, Armagh BT61 9DG , UK

Abstract

ABSTRACT We have studied the evolution of near-Earth asteroid (NEA) families and pairs to inform future searches. To do so, we integrated clusters of simulated NEAs with different initial conditions, namely the orbital inclination, ejection speed, and the effects of mean-motion resonances on the parent body prior to breakup while also varying the orbit, mass, and number of perturbing planetary bodies. We studied the orbital element dispersion rates of NEA family members and found a power-law increase in those families whose orbits brought them close to a planet. This allowed us to conclude that family dispersion is significantly affected by the Kozai–Lidov effect due to oscillations in the eccentricity, and that the rate of dispersion is slowest at high inclination relatively far from the nearest planet. In most cases, the ejection speed of the initial breakup does not affect the dispersion, except within weaker mean-motion resonances where more violent breakups will result in the ejection of a fraction of the asteroids, causing a large increase in dispersion. Within mean-motion resonances, where Kozai–Lidov oscillations are slowed, increases in the dispersion of a family are delayed, leading them to be identifiable for longer.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3