Effects of turbulent diffusion and back-reaction on the dust distribution around two resonant planets

Author:

Marzari Francesco1ORCID,D’Angelo Gennaro2ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Padova , via Marzolo 8, I-35131 Padova, Italy

2. Theoretical Division, Los Alamos National Laboratory , Los Alamos, NM 87545, USA

Abstract

ABSTRACT In evolved and dusty circumstellar discs, two planets with masses comparable to Jupiter and Saturn that migrate outwards while maintaining an orbital resonance can produce distinctive features in the dust distribution. Dust accumulates at the outer edge of the common gas gap, which behaves as a dust trap, where the local dust concentration is significantly enhanced by the planets’ outward motion. Concurrently, an expanding cavity forms in the dust distribution inside the planets’ orbits, because dust does not filter through the common gaseous gap and grain depletion in the region continues via inward drifting. There is no cavity in the gas distribution because gas can filter through the gap, although ongoing gas accretion on the planets can reduce the gas density in the inner disc. Such behaviour was demonstrated by means of simulations neglecting the effects of dust diffusion due to turbulence and of dust backreaction on the gas. Both effects may alter the formation of the dust peak at the gap outer edge and of the inner dust cavity, by letting grains filter through the dust trap. We performed high-resolution hydrodynamical simulations of the coupled evolution of gas and dust species, the latter treated as pressureless fluids, in the presence of two giant planets. We show that diffusion and backreaction can change some morphological aspects of the dust distribution but do not alter some main features, such as the outer peak and the expanding inner cavity. These findings are confirmed for different parametrizations of gas viscosity.

Funder

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3