The baryon content of groups and clusters of galaxies in the FABLE simulations

Author:

Henden Nicholas A1ORCID,Puchwein Ewald123ORCID,Sijacki Debora12

Affiliation:

1. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

2. Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

3. Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany

Abstract

ABSTRACT We study the gas and stellar mass content of galaxy groups and clusters in the fable suite of cosmological hydrodynamical simulations, including the evolution of their central brightest cluster galaxies (BCGs), satellite galaxies, and intracluster light (ICL). The total gas and stellar mass of fable clusters are in good agreement with observations and show negligible redshift evolution at fixed halo mass for $M_{500} \gtrsim 3 \times 10^{14} \, \mathrm{M}_{\odot }$ at z ≲ 1, in line with recent findings from Sunyaev–Zel’dovich (SZ)-selected cluster samples. Importantly, the simulations predict significant redshift evolution in these quantities in the low-mass ($M_{500} \sim 10^{14} \, \mathrm{M}_{\odot }$) regime, which will be testable with upcoming SZ surveys such as SPT-3G. Whilst the stellar masses of fable BCGs are in reasonable agreement with observations, the total stellar mass in satellite galaxies is lower than observed and the total mass in ICL is somewhat higher. This may be caused by enhanced tidal stripping of satellite galaxies due to their large sizes. BCGs are characterized by moderate stellar mass growth at z < 1 coincident with a late-time development of the ICL. The level of BCG mass growth is in good agreement with recent observations; however, we caution that the inferred growth depends sensitively on the mass definition. We further show that in situ star formation contributes more than half the mass of a BCG over its lifetime, the bulk of which is gained at z > 1 where star formation rates are highest. The stellar mass profiles of the BCG+ICL component are similar to observed profiles out to ∼100 kpc at z ≈ 0 and follow a close to power law shape out to several hundred kpc. We further demonstrate that the inferred size growth of BCGs can be severely biased by the choice of parametric model and the outer radius of the fit.

Funder

Science and Technology Facilities Council

ERC

BEIS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3