Demonstration of a portable system for daytime optical turbulence profile measurements

Author:

Ren Deqing1ORCID,Beck Christian2,Cao Wenda34ORCID,Drybread Erik1,Faulkner Katz David1

Affiliation:

1. Physics & Astronomy Department, California State University Northridge , Northridge, CA 91330, USA

2. National Solar Observatory , 3665 Discovery Drive, Boulder, CO 80303, USA

3. Center for Solar-Terrestrial Research, New Jersey Institute of Technology , 323 Martin Luther King Boulevard, Newark, NJ 07102, USA

4. Big Bear Solar Observatory, New Jersey Institute of Technology , Big Bear City, CA 92314, USA

Abstract

ABSTRACT Measurements of the optical turbulence profile are critical for selecting a potential new solar observational site or for characterizing an existing solar observatory. To measure the turbulence distribution to a moderate altitude above an existing observatory, current techniques use a large facility telescope with an aperture size larger than 1.0 m. This limits their application, especially in surveys to find a new potential site where no large facility telescope is available and where a portable measurement device is needed for such measurements. To address the above issues, we propose a new technique, termed the Advanced Multiple Aperture Seeing Profiler (A-MASP), which uses solar granulation to measure the daytime optical turbulence profile. The A-MASP is a portable system and thus can fully address the fundamental limitation of current optical turbulence profile measurement techniques. The A-MASP consists of two small telescopes, each with an aperture of the order of 100 mm, which can measure the turbulence profile to an altitude up to 20 km. Here, we present our A-MASP development work and its initial on-site measurements at the Big Bear Solar Observatory. In a proof-of-concept experiment, it was successfully demonstrated that the A-MASP can reliably measure the turbulence profile up to 12 km with a vector separation of 0.7 m between the two telescopes. The A-MASP could be used for future surveys to find potentially good observational sites.

Funder

National Science Foundation

Mt. Cuba Astronomical Foundation

National Aeronautics and Space Administration

NJIT

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3