Reverse shock emission in an off-axis top-hat jet model for gamma-ray bursts

Author:

Pang Sen-Lin1,Dai Zi-Gao12

Affiliation:

1. Department of Astronomy, University of Science and Technology of China , Hefei 230026 , China

2. School of Astronomy and Space Science, University of Science and Technology of China , Hefei 230026 , China

Abstract

ABSTRACT The afterglow of a gamma-ray burst (GRB) has been widely argued to arise from the interaction of a relativistic outflow with its ambient medium. During such an interaction, a pair of shocks are generated: a forward shock that propagates into the medium and a reverse shock that propagates into the outflow. Extensive studies have been conducted on the emission from the forward shock viewed off-axis. Furthermore, the observation of a reverse shock in an on-axis short GRB suggests that the reverse shock can produce an electromagnetic counterpart to a gravitational wave-detected merger. In this paper, we investigate the contribution of the reverse shock to the afterglow from a top-hat jet viewed off-axis, and apply our model to some short GRBs previously modelled by an off-axis emission. We employ the Markov Chain Monte Carlo (MCMC) method to get the model parameters (i.e. the jet’s half-opeaning angle θj, the viewing angle θobs, the initial Lorentz factor Γ0, and the isotropic energy Eiso). Our model successfully reproduces off-axis afterglow emission without a structured jet. In addition, our calculations suggest that the reverse shock may produce a prominent feature in an early afterglow, which can be potentially observed in an orphan optical afterglow.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3