Reanalysis of c-type RR Lyrae variable BE Dor, period modulations and possible mechanism

Author:

Li L-J1,Qian S-B12,Zhu L-Y12

Affiliation:

1. Yunnan Observatories, Chinese Academy of Sciences , P.O. Box110, Kunming 650011, Yunnan, China

2. University of Chinese Academy of Sciences , No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China

Abstract

ABSTRACT We reanalysed the c-type RR Lyrae star BE Dor (MACHO 5.4644.8, OGLE-LMC-RRLYR-06002) that had been discovered to show cyclic period changes. The photometric data of several sky surveys (DASCH, MACHO, OGLE, ASAS-SN, and TESS) were used for analyses. The O − C diagram and pulsation period obtained from Fourier analysis show significant period modulations in BE Dor. However, different from the previous viewpoint, the changes are quasi-periodic and abrupt. Therefore, the light-traveltime effect caused by the companion motion cannot explain the changes. Noting a same subtype star KIC 9453114 with similar phenomena has a high macroturbulent velocity, and the degree of O − C changes seem to be positively correlated with these velocities, we consider that the mechanism leading to period modulation should be caused by the interaction between turbulent convection and magnetic field activity in the ionization zone, i.e. the viewpoint of Stothers. It may not explain the general Blazhko effect but should explain such period modulations in BE Dor and those other c-type RR Lyrae stars. We hope our discoveries and viewpoints can provide some information and inspiration for relevant research.

Funder

University of California

Lawrence Livermore National Laboratory

Australian National University

NSF

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3