Unbinned likelihood analysis for X-ray polarization

Author:

González-Caniulef Denis1ORCID,Caiazzo Ilaria2ORCID,Heyl Jeremy1

Affiliation:

1. Department of Physics and Astronomy, University of British Columbia, Vancouver , BC V6T 1Z1, Canada

2. TAPIR, Walter Burke Institute for Theoretical Physics , Mail Code 350-17, Caltech, Pasadena, CA 91125, USA

Abstract

ABSTRACT We present a systematic study of the unbinned, photon-by-photon likelihood technique which can be used as an alternative method to analyse phase-dependent, X-ray spectro-polarimetric observations obtained with IXPE and other photoelectric polarimeters. We apply the unbinned technique to models of the luminous X-ray pulsar Hercules X-1, for which we produce simulated observations using the ixpeobssim package. We consider minimal knowledge about the actual physical process responsible for the polarized emission from the accreting pulsar and assume that the observed phase-dependent polarization angle can be described by the rotating vector model. Using the unbinned technique, the detector’s modulation factor, and the polarization information alone, we found that both the rotating vector model and the underlying spectro-polarimetry model can reconstruct equally well the geometric configuration angles of the accreting pulsar. However, the measured polarization fraction becomes biased with respect to the underlying model unless the energy dispersion and effective area of the detector are also taken into account. To this end, we present an energy-dispersed likelihood estimator that is proved to be unbiased. For different analyses, we obtain posterior distributions from multiple ixpeobssim realizations and show that the unbinned technique yields $\sim 10{{\ \rm per\ cent}}$ smaller error bars than the binned technique. We also discuss alternative sources, such as magnetars, in which the unbinned technique and the rotating vector model might be applied.

Funder

NSERC

Canadian Space Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3