A new method to determine X-ray luminosity functions of AGN and their evolution with redshift

Author:

Alqasim Ahlam1ORCID,Page Mat J1

Affiliation:

1. UCL Mullard Space Science Laboratory , Holmbury Hill Road, Dorking, Surrey RH5 6NT, UK

Abstract

ABSTRACTAlmost all massive galaxies today are understood to contain supermassive black holes (SMBH) at their centres. SMBHs grew by accreting material from their surroundings, emitting X-rays as they did so. X-ray luminosity functions (XLFs) of active galactic nuclei (AGN) have been extensively studied in order to understand the AGN population’s cosmological properties and evolution. We present a new fixed rest-frame method to achieve a more accurate study of the AGN XLF evolution over cosmic time. Normally, XLFs are constructed in a fixed observer-frame energy band, which can be problematic because it probes different rest-frame energies at different redshifts. In the new method, we construct XLFs in the fixed rest-frame band instead, by varying the observed energy band with redshift. We target a rest-frame 2–8 keV band using XMM-Newton and HEAO 1 X-ray data, with seven observer-frame energy bands that vary with redshift for 0 < z < 3. We produce the XLFs using two techniques; one to construct a binned XLF, and one using a maximum likelihood (ML) fit, which makes use of the full unbinned source sample. We find that our ML best-fitting pure luminosity evolution results for both methods are consistent with each other, suggesting that performing XLF evolution studies with the high-redshift data limited to high-luminosity AGN is not very sensitive to the choice of fixed observer-frame or rest-frame energy band, which is consistent with our expectation that high-luminosity AGN typically show little absorption. We have demonstrated the viability of the new method in measuring the XLF evolution.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3