Thermophysical modelling and parameter estimation of small Solar system bodies via data assimilation

Author:

Hamm M12ORCID,Pelivan I3,Grott M2,de Wiljes J1

Affiliation:

1. Institute for Mathematics, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany

2. German Aerospace Center (DLR), Rutherfordstr. 2, D-12489 Berlin, Germany

3. Fraunhofer Heinrich Hertz Institute (HHI), Einsteinufer 37, D-10587 Berlin, Germany

Abstract

ABSTRACT Deriving thermophysical properties such as thermal inertia from thermal infrared observations provides useful insights into the structure of the surface material on planetary bodies. The estimation of these properties is usually done by fitting temperature variations calculated by thermophysical models to infrared observations. For multiple free model parameters, traditional methods such as least-squares fitting or Markov chain Monte Carlo methods become computationally too expensive. Consequently, the simultaneous estimation of several thermophysical parameters, together with their corresponding uncertainties and correlations, is often not computationally feasible and the analysis is usually reduced to fitting one or two parameters. Data assimilation (DA) methods have been shown to be robust while sufficiently accurate and computationally affordable even for a large number of parameters. This paper will introduce a standard sequential DA method, the ensemble square root filter, for thermophysical modelling of asteroid surfaces. This method is used to re-analyse infrared observations of the MARA instrument, which measured the diurnal temperature variation of a single boulder on the surface of near-Earth asteroid (162173) Ryugu. The thermal inertia is estimated to be 295 ± 18 $\mathrm{J\, m^{-2}\, K^{-1}\, s^{-1/2}}$, while all five free parameters of the initial analysis are varied and estimated simultaneously. Based on this thermal inertia estimate the thermal conductivity of the boulder is estimated to be between 0.07 and 0.12,$\mathrm{W\, m^{-1}\, K^{-1}}$ and the porosity to be between 0.30 and 0.52. For the first time in thermophysical parameter derivation, correlations and uncertainties of all free model parameters are incorporated in the estimation procedure that is more than 5000 times more efficient than a comparable parameter sweep.

Funder

Deutsche Forschungsgemeinschaft

ERC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3