Local models of two-temperature accretion disc coronae – I. Structure, outflows, and energetics

Author:

Bambic Christopher J1ORCID,Quataert Eliot1ORCID,Kunz Matthew W12

Affiliation:

1. Department of Astrophysical Sciences , Peyton Hall, Princeton University, Princeton, NJ 08544 , USA

2. Princeton Plasma Physics Laboratory , PO Box 451, Princeton, NJ 08543 , USA

Abstract

ABSTRACT We use local stratified shearing-box simulations to elucidate the impact of two-temperature thermodynamics on the thermal structure of coronae in radiatively efficient accretion flows. Rather than treating the coronal plasma as an isothermal fluid, we use a simple, parametrized cooling function that models the collisional transfer of energy from the ions to the rapidly cooling leptons. Two-temperature models naturally form temperature inversions, with a hot, magnetically dominated corona surrounding a cold disc. Simulations with net vertical flux (NF) magnetic fields launch powerful magnetocentrifugal winds that would enhance accretion in a global system. The outflow rates are much better converged with increasing box height than analogous isothermal simulations, suggesting that the winds into two-temperature coronae may be sufficiently strong to evaporate a thin disc and form a radiatively inefficient accretion flow under some conditions. We find evidence for multiphase structure in the corona, with broad density and temperature distributions, and we propose criteria for the formation of a multiphase corona. The fraction of cooling in the surface layers of the disc is substantially larger for NF fields compared to zero net-flux configurations, with moderate NF simulations radiating ≳30 per cent of the flow’s total luminosity above two mid-plane scale heights. Our work shows that NF fields may efficiently power the coronae of luminous Seyfert galaxies and quasars, providing compelling motivation for future studies of the heating mechanisms available to NF fields and the interplay of radiation with two-temperature thermodynamics.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3