Affiliation:
1. Institute of Space Sciences (ICE, CSIC), E-08193 Barcelona, Spain
2. Institut d’ Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain
Abstract
ABSTRACT
The cosmological constant Λ is usually interpreted as Dark Energy (DE) or modified gravity (MG). Here, we propose instead that Λ corresponds to a boundary term in the action of classical General Relativity. The action is zero for a perfect fluid solution and this fixes Λ to the average density ρ and pressure p inside a primordial causal boundary: Λ = 4πG <ρ+3p >. This explains both why the observed value of Λ is related to the matter density today and also why other contributions to Λ, such as DE or MG, do not produce cosmic expansion. Cosmic acceleration results from the repulsive boundary force that occurs when the expansion reaches the causal horizon. This universe is similar to the ΛCDM universe, except on the largest observable scales, where we expect departures from homogeneity/isotropy, such as CMB anomalies and variations in cosmological parameters indicated by recent observations.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献