Affiliation:
1. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
Abstract
Abstract
We have performed combined photoionization and photodissociation region (PDR) modelling of a Crab nebula filament subjected to the synchrotron radiation from the central pulsar wind nebula, and to a high flux of charged particles; a greatly enhanced cosmic-ray ionization rate over the standard interstellar value, ζ0, is required to account for the lack of detected [C i] emission in published Herschel SPIRE FTS observations of the Crab nebula. The observed line surface brightness ratios of the OH+ and ArH+ transitions seen in the SPIRE FTS frequency range can only be explained with both a high cosmic-ray ionization rate and a reduced ArH+ dissociative recombination rate compared to that used by previous authors, although consistent with experimental upper limits. We find that the ArH+/OH+ line strengths and the observed H2 vibration–rotation emission can be reproduced by model filaments with nH = 2 × 104 cm−3, ζ = 107ζ0 and visual extinctions within the range found for dusty globules in the Crab nebula, although far-infrared emission from [O i] and [C ii] is higher than the observational constraints. Models with nH = 1900 cm−3 underpredict the H2 surface brightness, but agree with the ArH+ and OH+ surface brightnesses and predict [O i] and [C ii] line ratios consistent with observations. These models predict HeH+ rotational emission above detection thresholds, but consideration of the formation time-scale suggests that the abundance of this molecule in the Crab nebula should be lower than the equilibrium values obtained in our analysis.
Funder
European Research Council
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献