The clustering of undetected high-redshift black holes and their signatures in cosmic backgrounds

Author:

Ricarte Angelo1,Pacucci Fabio123ORCID,Cappelluti Nico45,Natarajan Priyamvada12

Affiliation:

1. Department of Astronomy, Yale University, 52 Hillhouse Avenue, New Haven, CT 06511, USA

2. Department of Physics, Yale University, PO Box 208121, New Haven, CT 06520, USA

3. Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, USA

4. Department of Physics, University of Miami, Coral Gables, FL 33124, USA

5. INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Gobetti 93/3, I-40129 Bologna, Italy

Abstract

ABSTRACT There exist hitherto unexplained fluctuations in the cosmic infrared background on arcminute scales and larger. These have been shown to cross-correlate with the cosmic X-ray background, leading several authors to attribute the excess to a high-redshift growing black hole population. In order to investigate potential sources that could explain this excess, in this paper, we develop a new framework to compute the power spectrum of undetected sources that do not have constant flux as a function of halo mass. In this formulation, we combine a semi-analytic model for black hole growth and their simulated spectra from hydrodynamical simulations. Revisiting the possible contribution of a high-redshift black hole population, we find that too much black hole growth is required at early epochs for z > 6 accretion to explain these fluctuations. Examining a population of accreting black holes at more moderate redshifts, z ∼ 2–3, we find that such models produce a poor fit to the observed fluctuations while simultaneously overproducing the local black hole mass density. Additionally, we rule out the hypothesis of a missing Galactic foreground of warm dust that produces coherent fluctuations in the X-ray via reflection of Galactic X-ray binary emission. Although we firmly rule out accreting massive black holes as the source of these missing fluctuations, additional studies will be required to determine their origin.

Funder

National Aeronautics and Space Administration

Nederlandse Onderzoekschool Voor Astronomie

Astrophysics Data Analysis Program

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3