On the impact of the numerical method on magnetic reconnection and particle acceleration – I. The MHD case

Author:

Puzzoni E1,Mignone A1ORCID,Bodo G2ORCID

Affiliation:

1. Department of Physics, Turin University, Via Pietro Giuria 1, I-10125 Torino, Italy

2. INAF - Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese, Italy

Abstract

ABSTRACT We present 2D magnetohydrodynamics numerical simulations of tearing-unstable current sheets coupled to a population of non-thermal test particles, in order to address the problem of numerical convergence with respect to grid resolution, numerical method, and physical resistivity. Numerical simulations are performed with the pluto code for astrophysical fluid dynamics through different combinations of Riemann solvers, reconstruction methods, and grid resolutions at various Lundquist numbers. The constrained transport method is employed to control the divergence-free condition of magnetic field. Our results indicate that the reconnection rate of the background tearing-unstable plasma converges only for finite values of the Lundquist number and for sufficiently large grid resolutions. In general, it is found that (for a second-order scheme) the minimum threshold for numerical convergence during the linear phases requires the number of computational zones covering the initial current sheet width to scale roughly as $\sim \sqrt{\bar{S}}$, where $\bar{S}$ is the Lundquist number defined on the current sheet width. On the other hand, the process of particle acceleration is found to be nearly independent of the underlying numerical details inasmuch as the system becomes tearing-unstable and enters in its non-linear stages. In the limit of large $\bar{S}$, the ensuing power-law index quickly converge to p ≈ 1.7, consistently with the fast reconnection regime.

Funder

INAF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3