Affiliation:
1. Steward Observatory and Department of Astronomy, University of Arizona, Tucson, AZ 85719, USA
Abstract
ABSTRACT
Using a new method to estimate total galaxy mass (MT) and two samples of low-luminosity galaxies containing measurements of the number of globular clusters (GCs) per galaxy (NGC), we revisit the NGC–MT relation using a total of 203 galaxies, 157 of which have MT ≤ 1010 M⊙. We find that the relation is nearly linear, NGC ∝ MT0.92 ± 0.08 down to at least MT ∼ 108.75 M⊙. Because the relationship extends to galaxies that average less than one GC per galaxy and to a mass range in which mergers are relatively rare, the relationship cannot be solely an emergent property of hierarchical galaxy formation. The character of the radial GC distribution in low-mass galaxies, and the lack of mergers at these galaxy masses, also appears to challenge models in which the GCs form in central, dissipatively concentrated high-density, high-pressure regions and are then scattered to large radius. The slight difference between the fitted power-law exponent and a value of one leaves room for a shallow MT-dependent variation in the mean mass per GC that would allow the relation between total mass in GCs and MT to be linear.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献