Long secondary periods in luminous red giant variables

Author:

Takayama Masaki12,Ita Yoshifusa3

Affiliation:

1. Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2, Nishigaichi, Sayo-cho, Hyogo 679-5313, Japan

2. Department of Astronomy, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

3. Astronomical Institute, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan

Abstract

ABSTRACT The origin of long secondary periods (LSPs) in red giant variables is unknown. We investigate whether stellar pulsations in red giants can explain the properties of the LSP variability. VIJHKs light curves obtained by OGLE and the IRSF/SIRIUS survey in the Small Magellanic Cloud are examined. The sample of oxygen-rich LSP stars shows evidence of a phase lag between the light curves of optical and near-IR band. The change in radius contributes to the bolometric change roughly half as much as the change in temperature, implying that the change in effective temperature plays an important role in the luminosity change associated with the LSPs. We have created numerical models based on the spherical harmonics to calculate the light amplitudes of dipole mode variability and have found that the models can roughly reproduce the amplitude–amplitude relations (e.g. (ΔI, ΔH)). The LSP variability can be reproduced by the dipole mode oscillations with temperature amplitude of ≲100 and ≲150 K for oxygen-rich stars and most carbon stars, respectively. Radial pulsation models are also examined and can reproduce the observed colour change of the LSPs. However, there is still an inconsistency in length between the LSP and periods of radial fundamental mode. On the other hand, theoretical period–luminosity relations of the dipole mode corresponding to so-called oscillatory convective mode were roughly consistent with observation. Hence, our result suggests that the observations can be consistent with stellar pulsations corresponding to oscillatory convective modes.

Funder

IRSF/SIRIUS

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3