The diversity of rotation curves of simulated galaxies with cusps and cores

Author:

Roper Finn A123ORCID,Oman Kyle A23ORCID,Frenk Carlos S23,Benítez-Llambay Alejandro4,Navarro Julio F5,Santos-Santos Isabel M E235ORCID

Affiliation:

1. Institute for Astronomy, University of Edinburgh, Royal Observatory , Blackford Hill, Edinburgh EH9 3HJ , UK

2. Institute for Computational Cosmology, Durham University , South Road, Durham DH1 3LE , UK

3. Department of Physics, Durham University , South Road, Durham DH1 3LE , UK

4. University of Milano-Bicocca, Piazza della Scienza , 3, 20126 Milano MI , Italy

5. Department of Physics and Astronomy, University of Victoria , Victoria, BC V8P 5C2 , Canada

Abstract

ABSTRACTWe use ΛCDM cosmological hydrodynamical simulations to explore the kinematics of gaseous discs in late-type dwarf galaxies. We create high-resolution 21-cm ‘observations’ of simulated dwarfs produced in two variations of the EAGLE galaxy formation model: one where supernova-driven gas flows redistribute dark matter and form constant-density central ‘cores’, and another where the central ‘cusps’ survive intact. We ‘observe’ each galaxy along multiple sightlines and derive a rotation curve for each observation using a conventional tilted-ring approach to model the gas kinematics. We find that the modelling process introduces systematic discrepancies between the recovered rotation curve and the actual circular velocity curve driven primarily by (i) non-circular gas orbits within the discs; (ii) the finite thickness of gaseous discs, which leads to overlap of different radii in projection; and (iii) departures from dynamical equilibrium. Dwarfs with dark matter cusps often appear to have a core, whilst the inverse error is less common. These effects naturally reproduce an observed trend which other models struggle to explain: late-type dwarfs with more steeply rising rotation curves appear to be dark matter-dominated in the inner regions, whereas the opposite seems to hold in galaxies with core-like rotation curves. We conclude that if similar effects affect the rotation curves of observed dwarfs, a late-type dwarf population in which all galaxies have sizeable dark matter cores is most likely incompatible with current measurements.

Funder

European Research Council

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3