Location and stability of distant retrograde orbits around the Moon

Author:

Pires P1,Winter O C2ORCID

Affiliation:

1. UERJ – Rio de Janeiro State University, CEP 27537-000, Resende, RJ, Brazil

2. UNESP – São Paulo State University, Grupo de Dinâmica Orbital e Planetologia, CEP 12516-410, Guaratinguetá, SP, Brazil

Abstract

ABSTRACT Recently has grown the interest of placing natural or artificial objects in the neighbourhood of the Moon. We numerically investigate a region of retrograde orbits around the Moon associated with the C Family of periodic orbits and the quasi-periodic orbits that oscillate around them (Broucke 1968; Winter 2000). We have given continuity to Winter (2000) investigations by introducing a more realistic dynamical scenario, one based on the four-body Sun–Earth–Moon–particle problem. Our results showed that the region of stability diminished to approximately 4 ${{\ \rm per\ cent}}$, the original size encountered for the circular-restricted three-body problem (CRTBP), mainly due to the Sun’s gravitational perturbations. None the less, the size of the region continues to be significant and we were able to found distant retrograde orbits (DROs) around the Moon with eccentricity following e = 2.259 63 × 10−6a + 0.238 45 (standard error of 1 ${{\ \rm per\ cent}}$) and semimajor axis values of the initial osculating orbits, varying between 110 000 and 185 000 km, remaining stable for a time span of 104 lunar periods. This set of distant orbits from the Moon are characterized by a narrow range of acceptable initial positions (0.8–0.83) and velocities of ∼0.5, in the rotating Earth–Moon frame. The out of plane amplitude oscillations of $\pm 15\, 000$ km presented by these DROs are a natural outcome of the significant Moon’s inclination of 5.15°. Some results presented on this work can be useful for lunar missions, such as the ones that would require prolonged stays around the satellite and use stable distant orbits as ‘parking’ orbits, such as the advanced concepts of NASA’s Asteroid Redirect Mission, proposed a few years ago.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Expanded Families of Periodic Orbits for the Jupiter–Callisto System;Journal of Spacecraft and Rockets;2023-12-21

2. Analysis of symmetric periodic orbits in a tripolar system with a segment;The European Physical Journal Special Topics;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3