A.C.I.D – an improved LSD technique for accurate line profile retrieval

Author:

Dolan Lucy S1ORCID,de Mooij Ernst J W1ORCID,Watson Christopher A1,Jackson David G1ORCID

Affiliation:

1. Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast , University Road, Belfast BT7 1NN , UK

Abstract

ABSTRACT Stellar activity and planetary effects induce radial velocity (RV) offsets and cause temporal distortions in the shape of the stellar line profile. Hence, accurately probing the stellar line profile offers a wealth of information on both the star itself and any orbiting planets. Typically, cross-correlation functions (CCFs) are used as a proxy for the stellar line profile. The shape of CCFs, however, can be distorted by line blending and aliasing limiting the stellar and planetary physics that can be probed from them. Least-squares deconvolution (LSD) offers an alternative that directly fits the mean line profile of the spectrum to produce a high-precision profile. In this paper, we introduce our novel method ACID (Accurate Continuum fItting and Deconvolution) that builds on LSD techniques by simultaneously fitting the spectral continuum and line profile as well as performing LSD in effective optical depth. Tests on model data revealed ACID can accurately identify and correct the spectral continuum to retrieve an injected line profile. ACID was also applied to archival High Accuracy Radial-velocity Planet Searcher (HARPS) data obtained during the transit of HD189733b. The application of the Reloaded Rossiter–McLaughlin technique to both ACID profiles and HARPS CCFs shows ACID residual profiles improved the out-of-line root mean square (RMS) by over 5 per cent compared to CCFs. Furthermore, ACID profiles are shown to exhibit a Voigt profile shape that better describes the expected profile shape of the stellar line profile. This improved representation shows that ACID better preserves the stellar and planetary physics encoded in the stellar line profile shape for slow rotating stars.

Funder

NASA

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3