A deep-learning model for the density profiles of subhaloes in IllustrisTNG

Author:

Lucie-Smith Luisa1ORCID,Despali Giulia234ORCID,Springel Volker1

Affiliation:

1. Max-Planck-Institut für Astrophysik , Karl-Schwarzschild-Str. 1, D-85748 Garching , Germany

2. Dipartimento di Fisica e Astronomia ‘Augusto Righi’, Alma Mater Studiorum Università di Bologna , via Gobetti 93/2, I-40129 Bologna , Italy

3. INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna , Via Piero Gobetti 93/3, I-40129 Bologna , Italy

4. INFN – Sezione di Bologna , Viale Berti Pichat 6/2, I-40127 Bologna , Italy

Abstract

ABSTRACT We present a machine-learning-based model for the total density profiles of subhaloes with masses $M \gtrsim 7\times 10^8\, h^{-1}{\rm M}_\odot$ in the IllustrisTNG100 simulation. The model is based on an interpretable variational encoder (IVE) which returns the independent factors of variation in the density profiles within a low-dimensional representation, as well as the predictions for the density profiles themselves. The IVE returns accurate and unbiased predictions on all radial ranges, including the outer region profile where the subhaloes experience tidal stripping; here its fit accuracy exceeds that of the commonly used Einasto profile. The IVE discovers three independent degrees of freedom in the profiles, which can be interpreted in terms of the formation history of the subhaloes. In addition to the two parameters controlling the normalization and inner shape of the profile, the IVE discovers a third parameter that accounts for the impact of tidal stripping on to the subhalo outer profile; this parameter is sensitive to the mass loss experienced by the subhalo after its infall on to its parent halo. Baryonic physics in the IllustrisTNG galaxy formation model does not impact the number of degrees of freedom identified in the profile compared to the pure dark matter expectations, nor their physical interpretation. Our newly proposed profile fit can be used in strong lensing analyses or other observational studies which aim to constrain cosmology from small-scale structures.

Funder

HPC

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3